239 research outputs found

    Lower Bound for the Fermi Level Density of States of a Disordered D-Wave Superconductor in Two Dimensions

    Full text link
    We consider a disordered d--wave superconductor in two dimensions. Recently, we have shown in an exact calculation that for a lattice model with a Lorentzian distributed random chemical potential the quasiparticle density of states at the Fermi level is nonzero. As the exact result holds only for the special choice of the Lorentzian, we employ different methods to show that for a large class of distributions, including the Gaussian distribution, one can establish a nonzero lower bound for the Fermi level density of states. The fact that the tails of the distributions are unimportant in deriving the lower bound shows that the exact result obtained before is generic.Comment: 15 preprint pages, no figures, submitted to PR

    Phase Diagram of the Half-Filled Extended Hubbard Model in Two Dimensions

    Full text link
    We consider an extended Hubbard model of interacting fermions on a lattice. The fermion kinetic energy corresponds to a tight binding Hamiltonian with nearest neighbour (-t) and next nearest neighbour (t') hopping matrix elements. In addition to the onsite Hubbard interaction (U) we also consider a nearest neighbour repulsion (V). We obtain the zero temperature phase diagram of our model within the Hartree-Fock approximation. We consider ground states having charge and spin density wave ordering as well as states with orbital antiferromagnetism or spin nematic order. The latter two states correspond to particle-hole binding with dx2−y2d_{x^2-y^2} symmetry in the charge and spin channels respectively. For t′=0t' = 0, only the charge density wave and spin density wave states are energetically stable. For non-zero t', we find that orbital antiferromagnetism (or spin nematic) order is stable over a finite portion of the phase diagram at weak coupling. This region of stability is seen to grow with increasing values of t'.Comment: Latex file, 10 output pages, 3 Figures (available on request to [email protected]), to appear in Phys. Rev. B (BR

    Staggered orbital currents in the half-filled two-leg ladder

    Get PDF
    Using Abelian bosonization with a careful treatment of the Klein factors, we show that a certain phase of the half-filled two-leg ladder, previously identified as having spin-Peierls order, instead exhibits staggered orbital currents with no dimerization.Comment: 8 pages, 2 figures. Final versio

    Mangiferin: A Promising Anticancer Bioactive

    Get PDF
    Of late, several biologically active antioxidants from natural products have been investigated by the researchers in order to combat the root cause of carcinogenesis, i.e., oxidative stress. Mangiferin, a therapeutically active C-glucosylated xanthone, is extracted from pulp, peel, seed, bark and leaf of Mangifera indica. These polyphenols of mangiferin exhibit antioxidant properties and tend to decrease the oxygen-free radicals, thereby reducing the DNA damage. Indeed, its capability to modulate several key inflammatory pathways undoubtedly helps in stalling the progression of carcinogenesis. The current review article emphasizes an updated account on the patents published on the chemopreventive action of Mangiferin, apoptosis induction made on various cancer cells, along with proposed antioxidative activities and patent mapping of other important therapeutic properties. Considering it as promising polyphenol, this paper would also summarize the diverse molecular targets of Mangiferin

    Incommensurate spin correlations in Heisenberg spin-1/2 zig-zag ladders

    Full text link
    We develop a low-energy effective theory for spin-1/2 frustrated two-leg Heisenberg spin ladders. We obtain a new type of interchain coupling that breaks parity symmetry. In the presence of an XXZ-type anisotropy, this interaction gives rise to a novel ground state, characterized by incommensurate correlations. In the case of a single ladder, this state corresponds to a spin nematic phase. For a frustrated quasi-one-dimensional system of infinitely many weakly coupled chains, this state develops true three dimensional spiral order. We apply our theory to recent neutron scattering experiments on Cs2CuCl4Cs_2CuCl_4.Comment: 4 pages of revtex, 3 figure

    Staggered Flux Phase in a Model of Strongly Correlated Electrons

    Get PDF
    We present numerical evidence for the existence of a staggered flux (SF) phase in the half-filled two-leg t-U-V-J ladder, with true long-range order in the counter-circulating currents. The density-matrix renormalization-group (DMRG) / finite-size scaling approach, generalized to describe complex-valued Hamiltonians and wavefunctions, is employed. The SF phase exhibits robust currents at intermediate values of the interaction strength.Comment: Version to appear in Phys. Rev. Let

    Broken time-reversal symmetry in strongly correlated ladder structures

    Get PDF
    We provide, for the first time, in a doped strongly correlated system (two-leg ladder), a controlled theoretical demonstration of the existence of a state in which long-range ordered orbital currents are arranged in a staggered pattern,coexisting with a charge density wave. The method used is the highly accurate density matrix renormalization group technique.This brings us closer to recent proposals that this order is realized in the enigmatic pseudogap phase of the cuprate high temperature superconductors.Comment: The version accepted in Phys. Rev. Lett. 5 pages, 6 eps figures, RevTex

    A Model with Propagating Spinons beyond One Dimension

    Full text link
    For the model of frustrated spin-1/2 Heisenberg magnet described in A. A. Nersesyan and A. M. Tsvelik, (Phys. Rev. B{\bf 67}, 024422 (2003)) we calculate correlation functions of staggered magnetization and dimerization. The model is formulated as a collection of antiferromagnetic chains weakly coupled by a frustrated exchange interaction. The calculation done for the case of four chains demonstrates that these functions do not vanish. Since the correlation functions in question factorize into a product of correlation functions of spinon creation and annihilation operators, this constitutes a proof that spinons in this model propagate in the direction perpendicular to the chains.Comment: revised version to appear in Phys. Rev B., 8 pages, a reference adde

    Impurity effects in unconventional density waves in the unitary limit

    Full text link
    We investigate the effect of strong, nonmagnetic impurities on quasi-one-dimensional conventional and unconventional density waves (DW and UDW). The conventional case remains unaffected similarly to s-wave superconductors in the presence of weak, nonmagnetic impurities. The thermodynamic properties of UDW were found to be identical to those of a d-wave superconductor in the unitary limit. The real and imaginary part of the optical conductivity is determined for electric fields applied in the perpendicular directions. A new structure can be present corresponding to excitations from the bound state at the Fermi energy to the gap maximum in addition to the usual peak at 2\Delta. In the dc limit, universal electric conductivity is found.Comment: 9 pages, 5 figure

    The fate of spinons in spontaneously dimerised spin-1/2 ladders

    Full text link
    We study a weakly coupled, frustrated two-leg spin-1/2 Heisenberg ladder. For vanishing coupling between the chains, elementary excitations are deconfined, gapless spin-1/2 objects called spinons. We investigate the fate of spinons for the case of a weak interchain interaction. We show that despite a drastic change in ground state, which becomes spontaneously dimerised, spinons survive as elementary excitations but acquire a spectral gap. We furthermore determine the exact dynamical structure factor for several values of momentum transfer.Comment: 8 pages of revtex, 7 figures; discussion of physical picture for ground state and excitations in the "twistless" ladder expanded, version to appear in Phys Rev
    • …
    corecore